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ABSTRACT 

SUNDOWN: MODEL-DRIVEN PER-PANEL SOLAR ANOMALY 

DETECTION FOR RESIDENTIAL ARRAYS 

 

MAY 2020 

 

MENGHONG FENG 

 

B.S, PURDUE UNIVERSITY 

 

M.S.M.E, UNIVERSITY OF MASSACHUSETTS AMHERST 

 

Directed by: Professor Prashant Shenoy 

 

 

There has been significant growth in both utility-scale and residential-scale solar 

installations in recent years, driven by rapid technology improvements and falling prices. 

Unlike utility-scale solar farms that are professionally managed and maintained, smaller 

residential- scale installations often lack sensing and instrumentation for performance 

monitoring and fault detection. As a result, faults may go undetected for long periods of 

time, resulting in generation and revenue losses for the homeowner. In this thesis, we 

present SunDown, a sensorless approach designed to detect per-panel faults in residential 

solar arrays. SunDown does not require any new sensors for its fault detection and 

instead uses a model-driven approach that leverages correlations between the power 

produced by adjacent panels to detect deviations from expected behavior. SunDown can 

handle concurrent faults in multiple panels and perform anomaly classification to 

determine probable causes. Using two years of solar generation data from a real home 

and a manually generated dataset of multiple solar faults, we show that our approach has 

a MAPE of 2.98% when predicting per-panel output. Our results also show that 
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SunDown is able to detect and classify faults, including from snow cover, leaves and 

debris, and electrical failures with 99.13% accuracy, and can detect multiple concurrent 

faults with 97.2% accuracy.  
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CHAPTER I 

INTRODUCTION 

             Recent technological advances and falling hardware price have led to significant 

growth in the deployment of renewable solar within the electric grid. The cost of solar 

deployments have dropped to less than $2.75 per watt in recent years [2] and have 

become competitive with traditional energy sources. As a result, utility-scale and 

residential-scale solar deployments have experienced sustained growth across the world, 

with more than 2.6GW of deployments in 2019 Q3 in the US alone [2].  

 Typically, larger utility-scale solar farms are professionally monitored and 

maintained for optimal performance—they are instrumented for monitoring real-time 

generation to identify production issues, and also cleaned frequently to reduce dust or 

pollen. Researchers have also suggested using drones carrying thermal cameras to 

identify and locate faults in large solar arrays [6]. However, the majority of solar 

installations today are small-scale installations, often on residential rooftops, with 

capacities of less than 10 kW in 2018 [1]. Due to cost reasons, such systems lack sensing 

and instrumentation that may be present in larger utility-scale solar farms. Further, 

monitoring of these systems is left to homeowners, who lack the technical expertise for 

this task. At best, system performance may be monitored at a coarse-grain system-wide 

basis to determine system-level issues. As a result, it is not un- common for residential 

solar arrays to encounter power anomalies or other local faults that go undetected for long 

periods of time, resulting in a loss of generation and revenue for the owner. While it is 

possible to add sensors and instrumentation for real-time monitoring, doing so for small-
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scale installations increases their cost, and is challenging to do for millions of 

installations that are already operational without such capabilities. 

 

  To address these challenges, in this paper, we present SunDown, a sensor-less 

approach for detecting generation faults in small-scale solar arrays on a per-panel basis 

(the terms fault and anomaly are used interchangeably in this paper). Our approach 

assumes that per- panel generation information is available from the array—an 

assumption that holds true for any installation that uses micro-inverters or DC power 

optimizers—and uses a model- driven approach to detect when the panel output deviates 

in an anomalous manner from the model-predicted output. Our approach is based on 

machine learning and can detect physical anomalies such as snow obstructions, leaves, 

and electric faults at panels. Our approach seeks to identify and alert solar owners of such 

issues in a timely manner so that they can be rectified to avoid production losses.  

  In designing, implementing, and evaluating our SunDown system we make the 

following contributions.  

• We present a model-driven approach, based on machine learning, that leverages 

correlations in the generated output between adjacent panels to predict the 

expected output of a particular panel and flags anomalies when the model 

predictions deviate from the expected values. Unlike prior work that has 

performed system-level fault detection, our approach is designed to perform more 

fine-grain fault detection at a per-panel level. Further, our approach can handle 
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and detect multiple concurrent faults in the system, a key challenge that has not 

been addressed by prior work.  

• We present a random forest-based classification technique to classify the probable 

cause of the observed fault. To validate our approach, we construct two labelled 

datasets of solar anomalies: a two year dataset from a real-home with real snow 

cover anomalies that we hand label using ground truth information, and a solar 

anomaly dataset that we construct with a twenty-panel array by injecting synthetic 

faults such as dust, leaves, and open circuit faults. Since there is a dearth of solar 

anomaly datasets, we release both datasets and our code as open-source tools to 

the community.  

• We conduct a detailed experimental evaluation of our methods. We show that our 

approach has a MAPE of 2.98% when predicting per-panel output, which shows 

the efficacy of using neighboring panels to perform model-driven predictions. Our 

results also show that SunDown is able to detect and classify faults such as snow 

cover, leaves, and electrical failures with 99.13% accuracy for single faults and is 

able to handle concurrent faults in multiple panels with 97.2% accuracy.  
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CHAPTER II 

BACKGROUND 

 

Residential Solar Arrays 

  Our work primarily focuses on residential solar arrays, such as ones often found 

on residential rooftops. Such installations are typically small-scale installations with 

capacities of 10kW or less and comprise a few to a few dozen solar panels (see Figure 

2.1). Since we are interested in monitoring anomalies and faults at a per-panel level, we 

assume that the power generation of the array can be monitored at a per panel level.  

  This is a reasonable assumption in practice since many residential arrays are 

equipped with micro-inverters (e.g. Enphase micro-inverters [3]) or DC power optimizers 

[4] on each panel that are designed to track and independently optimize the power 

generation of each individual panel. Such installations, which are now commonplace, are 

advantageous since they maximize the total system output even for deployments that span 

multiple roof surfaces and under partial shading-effects. As shown in Figure 1, such 

systems provide real-time per-panel generation data, which is essential for our approach. 

Other than knowledge of per-panel output, we do not assume any other sensors or 

instrumentation on the residential solar installation. Thus, we seek to develop a sensor-

less approach for per-panel solar anomaly detection.  
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Figure 1: A residential solar array (top), and real-time panel-level generation 

 

 

Solar Generation 

  It is well-known that solar generation at any site depends directly on the amount 

of sunlight – solar irradiance – received at that location. The solar irradiance is a function 

of the latitude and longitude of that location and the season of the year [18]. Of course, 

the weather specifically cloud cover can reduce the solar irradiance at a particular site.  

  For the purpose of this work, we assume that per-panel solar generation on any 

given day can be reduced to two factors: transient, which comprises of factors that 

temporarily impact power output, and faults which comprise of factors that have a 

prolonged negative impact on output.  
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  Transient factors include weather conditions such as cloud cover, wet panels 

caused by rain or dew, as well as site specific factors such as shading caused by nearby 

trees or other structures. We can classify transient factors into two classes—common or 

local. Common transient factors are those that impact all panels of a particular site such 

as overcast condition or rain. Local factors are those that impact a particular panel, or a 

group of panels, but not all of the panels at that site. For example, many shading effects 

may impact a portion of the site, depending on the foliage and the location of the sun.  

Solar Faults 

  Anomalies (also referred to as faults) in our case are defined to be factors that 

cause a persistent drop in production but can be rectified by the owner of the site. We are 

particularly interested in the following three types of faults (1) snow cover on one or 

more panels, (2) partial occlusions such as bird droppings, dust or leaves on a panel, (3) 

electric faults such as module failure, short circuits or open circuits. These faults cause 

either a reduction in output or zero output for a particular panel or a subset of panels.  

  Due to their close proximity to one another, multiple panels in a residential array 

may experience the same fault—for example, snow may cover multiple adjacent panels 

(or even the entire system), resulting in concurrent faults. Of course, a site may also 

suffer a full system outage, which is also a fault but is easier to detect than those that 

cause partial outages or partial output reduction.  
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Problem Statement 

  Consider a solar array with N solar panels. We assume that the panels are 

mounted on a residential roof and may be mounted on one or multiple roof planes. Note 

that in the latter case, panels will have different tilts and orientations. We assume that the 

power generated by each panel can be monitored in real-time and that the weather at the 

site is also known (e.g. from a weather service). Given such a setup, our problem is to 

design a technique that monitors the power output of each panel and the entire system, 

and labels the observed out- put in each time interval (e.g. a day) as normal or abnormal. 

Further, our technique should identify specific solar panels in the system that are 

experiencing faults and also determine possible cause of the fault (e.g. snow, partial 

occlusion, or electric fault).  
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CHAPTER III 

PER-PANEL SOLAR ANOMALY DETECTION 

 

 In this section, we describe our model-driven approach for per-panel solar fault 

detection and how we can build on this approach to perform multiple fault detection. We 

first describe the basic idea, followed by the details of our models and algorithms.  

Basic Idea 

  Consider a solar installation with N panels. Suppose that k panels are experiencing 

an anomaly that result in a reduction, or loss, of output from those panels. Initially, let us 

assume k = 1 (only one panel out of N is faulty). Later on, we show how our approach 

can be extended to handle multiple, concurrent faults where k > 1.  

  Since all N panels are mounted on the same roof in close proximity of each other, 

it follows that they experience highly correlated weather conditions, and produce similar 

output. Thus, our "sensorless" approach first constructs a model to predict the expected 

output of a panel from n neighboring panels (n ≥ 1). For example, a simple predictor is 

one that uses the mean output of n neighboring panels to estimate a particular panel’s 

output. Under normal conditions, since adjacent panel outputs are highly correlated, the 

model prediction will match the observed output of that panel with high accuracy. Note 

that any n out of the available N panels can be chosen to model the output of a particular 

panel. A useful heuristic is to use the “closest” n panels to the one being predicted or to 

use the n panels on the same roof plane since they will have higher correlations than 

those on a different roof surface of the same house. In our evaluation, we experimentally 
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evaluate the accuracy of these heuristics and also evaluate the value of n that yields 

sufficient accuracy.  

When a panel experiences an anomaly, however, the model predictions will continue to 

estimate the "normal case" output of that panel, while the observed output will deviate 

from this normal case. If the deviation is "large" and persists over an extended period of 

time, it is indicative of a fault, rather than an error in the model prediction. The cause of 

the fault can be separately determined by analyzing amount of loss or the power pattern 

exhibited by the panel. Such a model-driven approach only uses the observed output of 

panels to detect anomalies—no other instruments or sensors are needed for anomaly 

detection unlike some other approaches [6].  

Model-Based Predictions 

  Based on the above intuition, we now present two model-driven techniques for 

predicting the power output of an individual panel using neighboring panels. Our first 

model is based on linear regression and uses only power output of panels as input 

parameters to make pre- dictions. Our second model is based on a probabilistic graphical 

model and half-sibling regression.  

 Let Pi denote the observed power output of panel i at time instant i . Let us 

assume we wish to predict the output of panel i using n other panels. Typically we can 

choose n nearest panels, or n panels on the same roof plane, out of the N total panels on 

the roof. A linear regression model allows us to estimate the output of desired panel as a 

linear function of the others:  
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Pi  = wiPi1 + w2Pi2 + w3Pi3 + ... + wnPin + εi 

where X = {i1,i2,...,in} is the set of n panels used to model the output of the ith panel. We 

can use linear regression to estimate the weight wi that minimize the error term εi . Such 

an approach yields N distinct regression models, one for each panel in the system, where 

each model makes prediction using the observed output of n other panels. To determine if 

a panel has a fault, we compare the model predictions at time t, Pi(t) with the observed 

value P. If the difference between the model predictions and observed values is large and 

persists over a period of time (e.g., a day or multiple days), the approach flags that panel 

as faulty.  

 Our second model is based on a recently proposed machine learning technique 

called half- sibling regression that uses a Bayesian approach to remove the effects of 

confounding variables [28]. This approach has been used by astronomers to remove noise 

from measurements of multiple telescopes observing the same phenomena. The main 

intuition behind the approach can be understood from the astronomy use-case. Suppose 

that n + 1 tele- scopes are observing the same object such as star. The observations will 

have some “com- mon” noise introduced by factors such as air pollution or haze that 

impact visibility of the object. Furthermore, each telescope will have local factors such as 

instrument calibration error that introduce additional local errors. If we use observations 

of n telescopes to estimate the expected observation of the (n + 1)-st instrument, and take 

the difference between the observed and predicted values, we are left with the local errors 

(“anomalies”) at that instrument. In our case, we have n + 1 solar panels “observing” the 

sun—their power output represent their observations of the sun. All panels see common 

factors such as clouds that introduce similar output reductions in the power values. 
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Further, each panel has local fac- tors such as shade (transient factors) or faults that can 

result in additional reductions in the power output. If we use n panels to predict the 

output of the n + 1-st panel using a Bayesian model, the difference between the 

predictions and observed output should isolate local fac- tors including the effect of 

faults. This is the intuition behind using the Bayesian approach of [28]. 

Table 1: A comparison of SolarClique and our SunDown approach 

 SolarClique SunDown 

Per-Panel faults No Yes 

System-wide faults Yes Yes 

Multiple faults No Yes 

Anomalies Detected System-wide electrical Snow, electrical, occlusion 

  More recently, this approach was used in a system called SolarClique[17] to 

predict the out- put of an entire array using nearby solar arrays. We draw inspiration from 

the half-sibling regression paper [28] and SolarClique [17] for SunDown’s anomaly 

detection, but point out important differences between the SolarClique method and our 

approach as shown in table 1. First, SolarClique is designed for system-level predictions 

(predicting the total generation of an entire array) and does not have the capability of 

making fine-grain per-panel pre- dictions, which is the focus of our method. Second, a 

key technical limitation of SolarClique is that it assumes a single fault can occur at a 

time, and that the system is not capable of scenarios where multiple arrays are faulty. 

This is a reasonable assumption for SolarClique since it uses n arrays from n different 

homes to predict the output of a specific home, and faults across arrays and homes can be 

assumed to occur independently. In our case, since panels are in close proximity to one 

another, the same fault (e.g., snow) can impact multiple panels, and faults therefore no 

longer occur independently. Since the independence assumption of SolarClique does not 
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hold in our case, a key technical improvement over prior work is our ability to handle 

multiple faults (as discussed in the next section). For simplicity, we first assume a single 

fault in the entire system and present our approach. We then relax the assumption in the 

next section and show how the basic model can be extended to handle multiple 

concurrent faults. A final difference is that SolarClique did not focus on fault 

classification (and only detects large system-level electrical failures) while SunDown can 

identify multiple types of faults, including snow cover, occlusion faults and electrical 

faults.  

 

Figure 2: Graphical model representation 

  To describe our Bayesian model, let P be a random variable denoting the power 

output of a particular panel. Let X denote a random variable representing the power 

output of n other panels in the system. Hence, X is a vector of size n. Let C denote the 

confounding variables that impact both X and P. In our case, C denotes common 

confounding variables such as cloud cover that have the "same" impact on panels. Let L 

denote the local factors that impact the output of a panel. L will include transient factors, 

including partial shading, as anomalies that locally impact P. The relationship between P, 

X, L, and C can be captured using a (causal) graphical model as shown in Figure 2. Since 
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the output of each panel can be directly monitored, P and X are observed variables, while 

C and L are latent unobserved variables.  

  As can be seen, P depends on both L and C while X depends only on C (and is 

independent of L). C impacts X, and when conditioned on P, P becomes a "collider", 

making X and L dependent. To reconstruct L using half-sibling regression, we assume the 

following additive model  

P = L + f (C) 

 

Since C is unobserved, we can use X (which is observed) to approximate f (C). If X 

exactly approximate the function f (C), we can then compute f (C) on E [ f (C)|X]. Even 

otherwise, if X is a sufficiently large vector, it can yield a ground approximation. Thus, 

we can use X to predict P and recover L from above equation as  

L = P − E [P|X] 

  Note that L estimates both anomalies and transient factors, and the impact of 

transient factors must be removed from L to estimate the anomaly. Given these concepts, 

our algorithm to estimate the amount of production loss due to anomalies is as follows:  

  We first use regression to estimate P using X. This is similar to the linear 

regression method from the prior section. The regression yields E[P|X] - an estimate of P 

given the observed output of n neighboring panels that constitute X. Since P itself is 

observed, subtracting E [P|X] from P yields an estimate of the output loss L due to 

transient factor and anomalies as shown in equation above. A key difference between 
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linear regression model of section 3.0.2 and here is that we use bootstrapping to construct 

multiple regression model by subsampling the data (instead of a single regression model) 

and use an ensemble method based on Random Forest that uses the mean of multiple 

models to estimate E [P |X ].  

Next, since L contains effects of transient factors such as shade on panels as well 

anomalies, we must remove the impact of transient factors to obtain the "true" anomalies. 

We can use time series decomposition to extract the seasonal component that represents 

shading effect that occur daily at set time periods and remove it from L[17]. The 

remainder of L represents production loss at that panel due to any anomalies. Under 

normal operation L will be close to zero (no anomalies and no loss of output). When L is 

significant and persistent over a period, our model-driven approach flags an anomaly in 

the panel. 

 Both our regression and Bayesian models use the power output of n panels to 

predict the expected output of another panel. A very important assumption is that the n 

panels being used as inputs to the model are non-faulty and hence be used to predict the 

normal case output of another panel. An anomaly is flagged when the model prediction of 

normal case output deviates from the observed output, indicating the presence of an 

anomaly.  
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Figure 3: A forecasting model used to ensure non-noisy inputs to model 

 

  This approach works well when there is only one faulty panel in the system - which 

implicitly implies that all remaining panels are non-faulty and any model that uses some 

of these remaining panels to make predictions will have “clean” non-faulty inputs. 

However, due to the close proximity of panels, anomalies such as snow cover, dust, 

leaves, are likely to impact multiple panels. In this case, some of the inputs to the model 

may come from faulty panels, causing model prediction to have high errors.  

  Of course, if n is made large and only a small number of panels are faulty, the 

model may be able to tolerate the "noise" in a small number of inputs and still produce 

reasonable accurate prediction. However, many residential rooftops may have a small 

number of panels, which means n cannot always be large. Hence, we need an explicit 

method to tolerate the impact of multiple concurrent faults in the system.  

  Observe that our models use any n out of N total panels to predict the output of 

panel i. Thus, it is possible to construct multiple models for each panel by choosing 
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different subsets of n panels out of N, and then using them as inputs to predict the output 

of panel i. In the normal case (no faults), all of these models show similar predictions for 

panel i’s output. However, when multiple panels are faulty, any model that uses faulty 

panels as input will have higher errors while a model that uses all non-faulty inputs will 

continue to provide good predictions. Our goal then is to construct multiple models for 

each panel using our Bayesian or regression method, and then choose one of these 

models at each instant that uses non-faulty inputs.  

  To do so, we need to distinguish between faulty and non-faulty inputs. However, 

since the models are themselves being used to detect faults, we need a different method to 

determine which inputs are possibly faulty. To do so, we use a solar forecasting approach 

that predicts the output of the solar panel based on weather forecasts. There is extensive 

work on solar forecasting using weather forecasts and any such model can serve our 

purpose. We use a machine learning forecasting-based model that uses the location of the 

system (longitude and latitude), time of day, past power observations and near-term 

weather forecasts (e.g., sunny, cloudy) to estimate the output of a panel [18]. This model, 

and many others, have been implemented into the Solar-TK open-source library [7], 

which we leverage to design a custom forecasting model for each panel in the system 

using near-term future weather forecasts.  

Suppose that Pi(t) is the estimate of power output of a panel i based on this forecasting 

model. If Pi (t) − Pi is large, it implies that expected output differs from the prediction 

and the panel is possibly a "noisy" input. Our per-panel forecasting models perform these 

predictions for each panels and labels it as "noisy input" or "normal input". Any model 



 

17 

that uses one or more noisy panel as an input should be eliminated from consideration for 

anomaly detection purposes.  

That is, SunDown chooses any regression or Bayesian model (out of multiple models for 

a panel constructed from different subsets comprising n panels) such that all inputs to that 

model are labelled normal. 

Consider the following example to illustrate the process (figure 3). Suppose that a solar 

rooftop install has 4 panels: A, B, C, D. We wish to predict the output of panel A using 

two other panels. Suppose both A and B are faulty. Let us assume we have the following 

two half-sibling regression-based Bayesian models, f1 and f2 to predict PA, the power 

output of panel A  

PA = f1(PB, PC) 

PA = f2(PC, PD) 

 

where model f1 predicts A using panels B and C as inputs, while f2 predicts A using C 

and D. Our approach first predicts PA, PB, PC, and PD using per-panel machine learning 

solar forecasting models for each of the four panels [7]. Since A and B are faulty, they get 

labeled noisy inputs. Hence, f1 is eliminated from consideration since one of its inputs, 

PB, is a noisy input and f2 is chosen for prediction since both its inputs, PC and PD, are 

labelled "normal". Using model f2 yields a better estimate for PA than model f2. Note 

that, doing so enables us to handle concurrent faults–we can avoid using faulty panels as 

model inputs, and at the same time, use our Bayesian method to identify the presence of 
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multiple faults. Note that although our solar forecasting models also provide an estimate 

of the panel’s out- put, they are not suitable for anomaly detection. This is because they 

use weather forecasts of cloud cover, along with other parameters, to estimate a panel’s 

output. Forecasts of future weather are inherently error-prone, which means the the 

forecasting model will also have higher errors. Using the solar forecasting model directly 

for anomaly detection will have higher false positive (due to model errors). In contrast, 

the Bayesian approach uses actual power output observations to estimate a panel’s output 

for purposes of anomaly detection, which yields a more accurate model and reduces 

changes of false positives. This is the reason we use forecasting models to only identify 

noisy inputs; incorrectly labeling a panel as noisy due to forecasting error only causes 

some of the models to suppressed for anomaly detection and does not impact accuracy of 

the remaining models for finding faulty panels.  
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CHAPTER IV 

CLASSIFICATION 

 

Classification 

 While the previous section presented model-driven approaches to detect the 

presence of anomalies in one or more panels, in this section, we present a classification 

approach to determine the possible causes of the output loss seen at the panel(s).  

 

Figure 4: Snow event email alert 

               

 

 
 

Figure 5: Lower roof under snow 
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Figure 6: Panel output on sunny day in summer, winter, and a cloudy day 

 

 

 To assign a possible cause to an observed output loss, we must analyze the 

observed power pattern and match it to the "power signature" exhibited by different type 

of solar faults. However, this requires that we have ground truth data for various type of 

faults, which is challenging since there are no open datasets of solar faults available for 

research use (solar farm operators likely have such data but have not released it to 

others). Consequently, we need to gather our own data with ground truth information on 

solar faults.  

  Our anomaly dataset contains data from two residential scale solar installations:  

1. A 31-panel, 9kW solar installation (figure 1 top) that experienced multiple snow 

cover anomalies (figure 2 bottom) over its two-year lifetime 

2. A 20-panel ground mounted solar installation where we systematically introduce 

anomalies such as dust, leaves, electrical faults, etc., to mimic real-world faults 

and measure its impact on the output 

We discuss each dataset in more detail before describing our classification method. 
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Figure 7: Residential home power output under normal condition 

 

 

 

 

 

Figure 8: Residential home power output under partial shaded condition 
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Figure 9: Residential home power output under snow condition 

 

Dataset 

  This dataset comes from a residential solar array deployed on a home in Northern 

America (location details removed for double blind renewing). The house contains 31 

rooftop panels, mounted on four different roof planes, as shown in figure 1(bottom). Each 

panel is a 320W LG panel with an Enphase micro-inverter that can optimize the panel’s 

output in- dependently of the rest. As noted earlier, micro-inverters optimize and report 

panel-level generation data, which is a prerequisite for our models.  

  We have been gathering data from this system for over two years and have per 

panel generation information at 5-minute granularity from September 2017 to February 

2020. We have also gathered weather data for the location from Darksky and NOAA 

weather service. 

  The only real anomaly encountered by this system over the two-year period is 

snow cover, following a snow (the area receives frequent snowfall in the winter). 

Depending on how long the snow sticks on the panels following a snow event, snow-
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covered panels may produce little or no output. As snow melts, some panels generate 

output, while others stay covered with snow (Figure 9).  

  We have two sources of ground truth to label snow faults. First, the Enphase 

system sends an email to the homeowner when it observes near zero output for an entire 

day, as shown in figure 4. The email indicates a "possible production" issue at the system. 

Second, Darksky and NOAA provide past weather data, such as snow events and the 

extent of the snowfall at a location.  

  We use both sources of information (which match closely with each other) to 

manually inspect the per panel generation data on a snow day and the following several 

days. We then hand label each panel’s output as normal (if it produces any output) or as a 

snow anomaly (if the panel output is near zero). This yields a hand-labelled dataset of 

snow anomalies.  

 Using our 20-panel ground mounted experimental array and sensors to measure 

its power output, we carefully introduced several types of anomalies onto specific panels 

and measured its impact on the power output. We conduct several data gathering 

experiments over a period of several weeks under different conditions (sunny, partially 

overcast, overcast etc.) and gathered data for the following anomalies.  

1. Leaf occlusion: we introduced different number leaves on panels (partial 

occlusion anomaly) and measured its impact 

2. Dust occlusion: we added different amounts of dust on the panels and measured 

its impact 
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3. Water drops occlusion: we added varying amount of water drops on the panel and 

measured its impact. This is designed to mimic morning dew on panels, which is 

not a true anomaly but a weather effect 

4. Open circuit fault: we used a variable potentiometer to introduce a high resistance 

seen by the panel to mimic an open circuit fault and measured its impact 

  This hand-crafted anomaly dataset, along with photographs and labels, provides 

an additional source of data for our experiments. Figure 7 and 9 depicts the output of 

the panels in normal conditions and under a snow fault, respectively. Figure 10 and 

11 illustrate the power output under synthetically generated open circuit fault and a 

partial occlusion fault. We have released both datasets to the research community.  

 

Figure 10: Synthetic fault injection with open circuit 
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Figure 11: Synthetic fault injection with occlusion 

 

Figure 12: Synthetic fault injection with multiple concurrent faults 

 

 

 

 

Anomalies 

  Given anomalies detected by our Bayesian model we use a random forest 

classifier to label the possible cause of the fault for each panel that is faulty. The 

classifier needs to distinguish between three types of faults: snow, partial occlusion and 

open circuit. Note that partial snow over on a panel and partial occlusion faults both 

result in diminished, but non-zero output. Full snow cover on a panel and open circuit 

faults both yield zero output. To distinguish between these cases, we first sample 40 
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randomly chosen points over an entire day and compute the percentage reduction in 

power output when compared to the model pre- dictions for each of these points. This 

power loss vector is a key feature to our classifier. We also use two other features: month 

of the year and snow depth values from NOAA weather service. We train our random 

forest classifier using a training dataset of real snow and synthetic anomalies. Depending 

on the season (winter versus other seasons) and the observed power loss over a period of 

time, our classifier can label the probable cause of fault for each panel. Our approach can 

also label system-wide faults, caused either by a system-wide electrical failure or full 

snow cover on the entire system, both of which cause near total loss of power output.  
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CHAPTER V 

EXPERIMENTAL EVALUATION 

 

 We evaluate SunDown by quantifying (1) the accuracy of model-based power 

inference where we infer the output of a single panel using nearby panels, (2) the impact 

of parameters such as number of panels, roof geometry, and weather, and (3) the 

accuracy of our anomaly classification. We quantify the accuracy of predicting a panel’s 

output using Mean Absolute Percentage Error (MAPE) between the inferred output and 

the actual solar generation, as below.  

𝑀𝐴𝑃𝐸 =
1

𝑚
∑ |

𝑃𝑂(𝑡) − 𝑃𝐼(𝑡)

𝑃̅𝑂

|

𝑚

𝑡=1

 

  where m is the number of samples, Po(t) is the observed solar power at time t, 

𝑃𝐼(𝑡) is the inferred power at time t, and 𝑃̅𝑂 is the mean of observed power generation. 

Above equation is an alternative form of standard MAPE where we replace the 

denominator comprising a single observed value by the mean of all observed values. The 

alternative form avoids divide by zero issues when the denominator (and observed value) 

are zero. 

  For the anomaly detection and classification tasks, our goal is to correctly classify 

all the different anomalies. We use three different metrics to quantify different aspects of 

the classification task: accuracy, sensitivity, and specificity. The accuracy is computed by 

dividing the number of correctly classified anomalies by the total number of anomalies. 

Sensitivity and specificity metrics are used for the unbalanced data case where the 
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number of one category is smaller than other. The different metrics are computed as 

below.  

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =  
𝑇𝑃 + 𝑇𝑁

𝑁
 

𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦 =  
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
 

𝑆𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑖𝑡𝑦 =  
𝑇𝑁

𝑇𝑁 + 𝐹𝑃
 

  where N is the total number of instances, T P is the number of anomalies correctly 

classified, T N is the number of normal days correctly classified, F P is the number of 

normal days classified as anomalies, and F N is the number of anomalies misclassified as 

normal days. Accuracy is used to evaluate the overall model’s performance, while 

sensitivity and specificity are used to test how accurate the model is to correctly detect 

the anomalies and normal cases.  

Prediction Model Accuracy 

  We begin by evaluating the accuracy of predicting the power output of an 

individual panel using neighboring panels.  

 To evaluate the accuracy of model inference, we choose a test data only from the 

days where the site experiences no anomaly. We then use the normal days of the home 

dataset to train our linear regression and graphical model.  
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Figure 13: Machine learning model 

We also compare their performance with a naive approach that infers the power output of 

a panel as the mean output of n other panels. We then compare the model predictions 

using a test dataset and compute the MAPE values for each approach. As shown in Figure 

13, the MAPE values for Bayesian model, linear regression, and naive approach are 3%, 

4%, and 8.6%, respectively. The naive approach has the worst accuracy since it all panels 

produce similar output, which is not true in many cases due to panel level variations. 

Linear regression works well when the output of different panels is highly correlated and 

have a linear relation between them, which is not true when some of the panels 

experience partially shading. Our graphical ensemble learning approach is able to model 

non-linear relationships and yields highest accuracy and a tight confidence interval. We 

use the graphical model for the subsequent experiments, unless stated otherwise.  
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Figure 14: Size of training data required 

  Next, we evaluate model accuracy for different amounts of training data. If a 

model requires a lot of training data for good accuracy, it can hinder its use for solar sites 

that have been recently deployed or for the sites where long-term panel level data is not 

available. We vary the training data size (by randomly choosing a certain number of 

days) and evaluate its ac- curacy for predicting output using a test dataset. Figure 14 

demonstrates that our model can achieve a decent accuracy and a 10% MAPE with only 

one day of per panel data. If the number of days is increased to 4, the MAPE drops to 

3.5% and stays almost constant beyond four days.  

  Results: Our graphical model can predict per-panel output with 2.98% MAPE and 

outperforms linear regression and a naive averaging approach. The random forest-based 

ensemble graphical model does a better job of capturing non-linear relationships among 

less correlated data than linear regression. While model accuracy increases with training 

data size, even only four days of training data yield good accuracy.  
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Impact of Parameters 

  We next investigate various factors that impact the inference accuracy, including 

number of panels, geometry of the solar deployment and weather.  

 

Figure 15: Number of Panels 

  The individual solar panels at a site can demonstrate subtle variations in their 

solar output, despite their close proximity, due to panel-level dust, different tilt and 

orientation angles, and panel level physical faults such as cracked glass. To evaluate how 

many panels are need by a model to provide adequate accuracy, we vary n (the number of 

panels used by the model as input) and compute MAPE for different n. Figure 15 shows 

inaccuracy is high when using less than 3 panels for inference. The accuracy improves as 

number of panels is increased to 5 and shows diminishing gains beyond that. The model 

has an average MAPE value of only 3-4% and a very tight bound, when using 5 panels, 

as compared to 9% MAPE with single panel. This result suggests that SunDown requires 

as little as 5 panels to be highly accurate.  
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Figure 16: Rooftop geometry impact 

  The output of a solar panel depends upon its tilt and orientation, among other 

factors [9]. Since a residential array may be installed on multiple roof planes, it is 

preferable to use panels on the same roof plane to predict others (since they will have 

similar tilt and orientation and will exhibit higher correlations).  

  To evaluate the effect of roof geometry, we split the home dataset into four sub-

datasets based on the four roof planes where panels are deployed. We create four 

graphical models to predict the power output of ith panel by using n = 7 panels as inputs. 

For east roof, west roof, and lower roof cases, all 7 input panels are mounted side by side 

on the same roof plane facing the same direction. In the fourth scenarios, a mixed dataset 

is created by combined 2 panels from each east roof and west roof datasets, and 3 panels 

from lower roof dataset. Figure 16 illustrates the inference accuracy as the geometry of 

panels used for inference is varied. For the same roof plane, the model is highly accurate 

and the MAPE value is be- tween 3% to 3.2%. The large variation for the east roof is due 

to the partial shading on some of the panels on the roof, leading to inaccurate inferences. 

The average MAPE of 5.5% for the mixed dataset demonstrates that our model produces 
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a decent accuracy even when input panels are chosen from different roof planes. Thus, 

when knowledge of the roof geometry is available, it should be exploited, but the model 

works well even for systems where the roof geometry may be unknown causing the 

model to use panels from different roof planes for inference.  

 

Figure 17: Weather Impact 

  The weather at a solar site, primarily cloud cover, impacts the power generation 

of a site. On a sunny day, all the solar panels produce similar amount of power. However, 

on a cloud day, scattered clouds may only cover one or few of the panels leading to 

power variation across panels, which can complicate inference. Figure 17 illustrates the 

effect of weather on the accuracy of the inference task. Our model achieves similar mean 

accuracy on both sunny and cloudy days, indicating it performs well regardless of 

weather. The higher variance in MAPE on a sunny day is due to shading from nearby 

structures, that has a more prominent impact on a sunny day over a cloudy one.  

  Results: Our experiments show that the number of panels used for prediction as 

well as the roof geometry play an important role in the model’s performance. We find 

that model yields higher accuracy when five or more panels are used for predictions and 
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when these panels are co-located on the same roof plane. The weather conditions, 

however, do not impact model accuracy.  

Anomaly Classification Accuracy 

 

Figure 18: Classification accuracy for system-wide snow fault 

  The previous section evaluated the accuracy of our model in predicting the output 

of a panel using nearby panels. We next evaluate the accuracy of model-drives approach 

and the classifier in detecting anomalies and classifying anomalies, respectively. The 

common anomalies we consider include snow fault, open circuit, and partial occlusions 

due to leaves. Al- though, other factors such as partial shading also results in the loss of 

energy, we do not consider shade to be an anomaly since it is a transient phenomenon and 

does not need corrective action.  

Our home dataset already includes real snow faults that are labelled, and we evaluate the 

accuracy of our classifier on identifying these snow faults. We then use the synthetic 

faults from our solar anomaly dataset and synthetically inject them into the home data set 
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by introducing synthetic single panel faults as well as concurrent fault and evaluate the 

accuracy of our classifier. Figure 9 presents per-panel data for a typical day when electric 

fault or object covering anomaly has been injected into one or many panels.  

  We first evaluate the ability of our classifier in detecting snow faults in the home 

dataset (re- call that the data set is labelled as normal or snow for each panel). We extract 

the features from daily power output, which include Pearson’s correlation coefficient, 

ratio of maximum observed power and the nominal panel capacity, and weather data such 

as snow and cloud cover and use them as inputs to our random forest classifier. Figure 18 

shows the confusion matrix of our classifier and shows high accuracy. Table 2 shows that 

our approach is able identify system-level snow faults an accuracy of 99.13%, sensitivity 

of 100%, and specificity of 95.12%. We note that snow faults seen in our dataset tends to 

be system-wide faults, where all panels get covered with snow after a snow event and 

exhibit a snow fault concurrently. While it is certainly possible for only some panels to 

have snow cover (e.g., if snow melts unevenly across panels), our dataset presently does 

not have such faults.  
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Figure 19: Classification accuracy for (left) single and (right) multiple faults 

 

 

Table 2: Classification Metrics 

Classification Accuracy Specificity Sensitivity 

System level  98.13% 95.12% 100% 

Single, panel-level 98.75% 97% 100% 

Multiple panel-

level 

97.2% 97.06% 97.26% 

 

  Since all observed snow faults in our dataset were system-faults, we next show 

that our approach is still capable of fine-grain anomaly detection and classification of a 

single fault and it is also capable of detecting concurrent faults in a subset of the panels. 

To do so, we use our solar anomaly dataset and choose the partial occlusion and open 

circuit anomaly from the dataset and inject these faults into a single, randomly chosen, 

panel of the array; different panels have faults injected into them on different days. We 

use our model to detect the presence of the fault and our random forest classifier to 

identify the type of fault. We next inject multiple concurrent faults of all types (snow, 

occlusion, open circuit) into the array using a similar methodology and attempt to detect 
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and classify each fault using our model and classifier (note that we need to use our 

concurrent fault detection approach in this case).  

Figure 19(left) and 19(right) show the confusion matrix of classifying single and 

concurrent faults in the array. Table 2 shows that our model can classify single fault with 

accuracy of 98.78%, specificity of 97%, and sensitivity of 100%. For multiple concurrent 

faults, the model obtains accuracy of 97.2%, specificity of 97.06%, and sensitivity of 

97.26%.  

Results: Our experiments demonstrate the efficacy of our fault detection and 

classification methods for real snow faults as well as synthetically injected single and 

concurrent panel- level faults. Our results show that the random forest classifier is an 

effective approach for identifying both system-wide faults as well as faults that occur on 

a subset of panels. Our approach is able to classify snow, partial occlusion and open 

circuit faults with accuracy of more than 97% in terms of overall accuracy, specificity, 

and sensitivity.  
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CHAPTER VI 

RELATED WORK 

 There has been significant work on predicting power output for solar sites [5, 7, 

12, 23, 24, 27, 29]. All of these studies predict only system level output by using long 

term historical data for model training [27, 29], small amount of historical data for 

estimating system parameters [7], system configuration details [5, 23, 24], or output from 

a nearby site [12]. None of the studies predict the individual panel level output, their 

prediction for all of the panels would be the same. Furthermore, while the anomaly 

detection and classification are not the key goal, some of these studies can be used to 

detect panels whose output significantly varies from the system level output. However, a 

20-30% error reported by these approaches in system level output prediction will limit 

their anomaly detection and classification accuracy.  

  There is also significant prior work on anomaly detection and classification in 

solar photovoltaic systems, that can be broadly classified into model-based approaches 

[19, 16, 20, 11, 14] and machine learning based [8, 13, 15, 26, 31, 25, 10, 21, 22, 32] 

approaches. Model based approaches produce accurate analytical results but require PV 

module’s specifications and cannot adapt to complex PV systems if the pre-defined 

parameters change with dynamic environment [21]. Some of the studies use power output 

data from nearby solar sites [30, 17] to detect and classify anomalies. In [30], authors 

compare the performance of different solar arrays at the same site, but do not do anomaly 

classification.  
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  To the best of our knowledge, there is no prior work on classifying panel-level 

anomalies. All of the aforementioned approaches target system-level anomaly detection 

and are not suitable for panel-level anomaly classification tasks. We extend the anomaly 

detection and classification capability to panel level, where we are able to classify various 

types of faults, i.e. snow, object covering, and electrical faults, on a single or multiple 

panel.  

 

 

 

 

 

 

 

 

 

 

 



 

40 

CHAPTER VII 

CONCLUSION 

 In this paper, we proposed SunDown, a sensorless approach to detecting per-panel 

anomalies in residential solar arrays. Our approach uses a model-driven approach that 

leverages correlations between the power produced by adjacent panels to detect 

deviations from expected behavior. Sundown can handle faults in multiple panels and 

determine the probable cause of anomalies. We evaluated SunDown using two year 

panel-level generation data from the from a real site and a manually gathered dataset of 

various faults. Our approach requires data from only 5 panels for accurate prediction, is 

agnostic to weather characteristics, and yields high accuracy even when panels from 

different roof geometries are used. We show that our approach is accurate in predicting 

panel level output with a MAPE of 2.98% and can correctly classify anomalies 

with >97% accuracy. We released the per-panel dataset from the real site and the 

manually generated dataset of various faults for research use.  
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